Diffusion on the 3D Euclidean Motion Group for Enhancement of HARDI Data

نویسندگان

  • Erik Franken
  • Remco Duits
چکیده

In previous work we studied linear and nonlinear left-invariant diffusion equations on the 2D Euclidean motion group SE(2), for the purpose of crossing-preserving coherence-enhancing diffusion on 2D images. In this paper we study left-invariant diffusion on the 3D Euclidean motion group SE(3), which is useful for processing three-dimensional data. In particular, it is useful for the processing of High Angular Resolution Diffusion Imaging (HARDI) data, since these data can be considered as orientation scores directly, without the need to transform the HARDI data to a different form. In principle, all theory of the 2D case can be mapped to the 3D case. However, one of the complicating factors is that all practical 3D orientation scores are not functions on the entire group SE(3), but rather on a coset space of the group. We will show how we can still conceptually apply processing on the entire group by requiring the operations to preserve the introduced notion of alpha-right-invariance of such functions on SE(3). We introduce left-invariant derivatives and describe how to estimate tangent vectors that locally fit best to the elongated structures in the 3D orientation score. We propose generally applicable techniques for smoothing and enhancing functions on SE(3) using left-invariant diffusion on the group. Finally, we will discuss implementational issues and show a number of results for linear diffusion on artificial HARDI data.

منابع مشابه

Accelerated Diffusion Operators for Enhancing DW-MRI

High angular resolution diffusion imaging (HARDI) is a MRI imaging technique that is able to better capture the intra-voxel diffusion pattern compared to its simpler predecessor diffusion tensor imaging (DTI). However, HARDI in general produces very noisy diffusion patterns due to the low SNR from the scanners at high b-values. Furthermore, it still exhibits limitations in areas where the diffu...

متن کامل

A Statistical Study of two Diffusion Processes on Torus and Their Applications

Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...

متن کامل

HARDI Denoising: Variational Regularization of the Spherical Apparent Diffusion Coefficient sADC

We denoise HARDI (High Angular Resolution Diffusion Imaging) data arising in medical imaging. Diffusion imaging is a relatively new and powerful method to measure the 3D profile of water diffusion at each point. This can be used to reconstruct fiber directions and pathways in the living brain, providing detailed maps of fiber integrity and connectivity. HARDI is a powerful new extension of diff...

متن کامل

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

Fiber Enhancement in Diffusion-Weighted MRI

Diffusion-Weighted MRI (DW-MRI) measures local water diffusion in biological tissue, which reflects the underlying fiber structure. In order to enhance the fiber structure in the DW-MRI data we consider both (convection-)diffusions and Hamilton-Jacobi equations (erosions) on the space R o S of 3D-positions and orientations, embedded as a quotient in the group SE(3) of 3D-rigid body movements. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009